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Damage Threshold Analysis

- Perpendicular to bedding samples have higher stress thresholds than those parallel to bedding. 
- Crack initiation values successfully calculated: avg peak strength of parallel samples = 46%, perpendicular samples = 48% 
- Crack damage values successfully calculated: avg peak strength of parallel samples = 90%, perpendicular samples = 96% 
- Several crack damage values were equal to peak strength values, indicating very little stress accumulation between crack coalescence and 
macroscopic failure at peak strength. 

- Tensile strength has been correlated with the crack initiation threshold based on the hypothesis 
that crack initiation is a result of  tensile stress concentration at a discontinuity or heterogeneity (9).
- However, no predictable relationship has been determined between threshold parameters and 
the tensile strength of mudstone samples in this study (see plot above right and table at right). 
- These methods will be repeated on the samples from the remaining three cores once  UCS tests 
corresponding to the indirect tensile test results reported herein have been completed. 

- Crack initiation and linear termination values fall 
within a maximum of 1.5 percent di�erence of one an-
other, indicating that the onset of non-linear behavior 
on the axial stress-axial strain curve could be utilized to 
approximate crack initiation. 
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Correlations between a mudstone heterogeneity index and micromechanical properties in the Lower Mancos Shale
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Sub-failure mode Representative Samples Geometry
a. Splitting parallel to laminations

b. Splitting perpendicular to laminations

b. Splitting perpendicular to laminations
and shearing sub-parallel to laminations

a. Splitting parallel to laminations and
shearing sub-perpendicular to laminations

3. Stepped tensile splitting a. stepping parallel to laminations

b. stepping perpendicular to laminations

1a.

2a.

3a. 3b.

2b.

1b. 1a.

2a.

3a. 3b.

2b.

1b.

Indirect Tensile Testing Analysis

R² = 0.3832

R² = 0.2077
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Three modes of failure were observed across samples tested. These modes of failure span a variety of strength values and MHI parameters. 

- Samples tested parallel to bedding fail at lower tensile strength values (avg=6.94 MPa, range=1.84 - 19.41 MPa) than those tested perpendicular to 
bedding (avg=9.01, range=4.08 - 30.89 MPa)

- Wax preserved samples fail at lower tensile strength values (avg=5.51 MPa, range=1.84 - 11.34 MPa) than non-wax 
preserved samples (avg=10.47, range=1.84 - 30.89 MPa)

- Wax preserved samples failed in a step like pattern when tested perpendicular to bedding (Mode 3b, see failure 
mode table below); failure steps occurred between heterogeneities, commonly stepping across bedding planes

- Post-testing the wax-preserved samples commonly experienced �uid loss as shown in the photo on the right; no 
�uid loss was visible prior to testing or during sample preparation
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- Al-rich samples have the lowest ITS 
values while Ca-rich  sample have 
higher ITS values for both parallel and 
perpendicular to bedding samples.

- The highest ITS samples have ap-
proximately proportionate mixtures 
of the three endmember composition 
values.

- The combination of fabric parame-
ters reveals weak trends in distribu-
tion of strength values, likely due to 
lack of samples that contain an ex-
pression of all three endmembers.

- Low ITS, Al-rich, clay-rich mudstones 
perpendicular to bedding indicate 
weak bedding planes in �ne mud-
stones, while higher ITS values corre-
spond to Al-rich and sand rich sam-
ples measured parallel to bedding, 
suggesting strength in heterolithic 
layering.

- Low ITS values correspond with 
Al-rich, strongly laminated samples 
again suggesting weak bedding 
planes in �ne mudstones tested per-
pendicular to bedding.

Relationships between the MHI and Indirect Tensile Strength (ITS) Results 
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Mode III: Stepped tensile splitting:
Stepped failure with 
minor drop in force
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Discrete, dramatic drop 
in force after peak

Mode I: Tensile Splitting:
Discrete drop in force

after peak

Mode II: Combination tensile splitting & shearing:

Main failure mode
1. Tensile splitting

2. Combination tensile 
splitting and shearing
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Linear portion of the axial stress-Axial strain curve,
from which Young's Modulus and Poisson's Ratio are calculated.
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Relationships between max 
strength and elastic moduli 
from these tests are not always 
predictive (see table below).

Rocks behave as quasi-elastic 
brittle solids, meaning that they 
deform both elastically and 
plastically, as evidenced by the 
linear and non-linear portions 
of the axial stress-axial strain 
curves.  Thus, damage threshold 
values identi�ed along the 
entire curve, from crack initia-
tion to post-failure, are exam-
ined herein in an attempt to 
identify predictive strength pa-
rameters.

Classical Geomechanics Background
The linear portion of the stress-strain curve from compression testing represents elastic behavior and is used to calculate two commonly used elastic 
moduli: Young’s Modulus, E, and Poisson‘s ratio, ν. Results of E and ν from TXC and UCS tests from the RGU and MCF cores are graphed below. 

Axial strain

Radial 
Strain

Test Orientation R2

Triaxial (TRX) Perpendicular 0.8365
Triaxial (TRX) Parallel 0.4655
Uniaxial (UCS) Parallel 0.0388
Uniaxial (UCS) Perpendicular 0.0023

Triaxial (TRX) Perpendicular 0.0471
Triaxial (TRX) Parallel 0.0286
Uniaxial (UCS) Parallel 0.2436
Uniaxial (UCS) Perpendicular 0.7981

Young's Modulus

Poisson's Ratio

 ,  
 

= = =  

 
 

Poisson’s Ratio,  
 

=
 

 
= =

/
/

 ,  
 

= = =  

 
 

Poisson’s Ratio,  
 

=
 

 
= =

/
/

Geomechanics Background and Methodology

Damage Threshold Background and Methodology
Micro-structural features govern the location of crack tips during fracturing. Thus, micro-scale sedimentary heterogeneity is hypothesized to control 
fracture zone development (4-6). Throughout fracture zone development, damage threshold parameters along the stress-strain curve identify nucle-
ation, propagation, and coalescence of micro-cracks (7-8). Damage thresholds were calculated using the methodologies described below. 

Indirect Tensile Testing Background and Methodology 
Indirect tensile testing was carried out on 126 disks from three cores of the Lower Mancos Shale. At least ten samples per facies (see stratigraphic 
columns on right hand panel) were chosen for analysis. 59 samples were wax-preserved directly from the wellbore of the Lindisfarne core, remained 
preserved until sample prep, and were re-preserved until each analysis was carried out. 

Analysis was completed according to ISRM Guidelines using a �xture 
machined to �t the triaxial unit  at EGI at the Univesity of Utah with 
the following methodology:
- Samples were prepared at 1” diameter and 0.5” thickness
- CT scans were carried out in order to eliminate samples with exten-
sive pre-existing �aws 
- Mass, diameter, and width were recorded and density was calculated
- Each sample was marked where the point load would be placed
- Each sample was wrapped in 0.5” wide paper tape, per ISRM 
- Each sample was loaded at a rate of 1x10-5 in/sec and force-time data 
were collected at 10 Hz until failure
- For each depth range, at least one parallel and one perpendicular to 
bedding sample was analyzed

The post-failure behavior of the 
sample is also not utilized in classic

geomechanics analyses, however this 
portion of the curve demonstrates 

energy release at failure.

The remainder of the 
stress-strain curve is not
Utilized as it represents 

in-elastic or plastic behavior. 

Damage threshold analysis was carried out on stress-strain results from 23 UCS tests. This preliminary analysis was completed on the MCF and RGU cores 
from the Uinta Basin, and the successful methods proposed herein will be utilized on plugs from the Lindrith, Lindisfarne, and FGF cores. 
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Damage Threshold Analysis, stress-strain results from UCS test of Mancos Shale
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Damage Threshold Analysis, stress-strain results from TXC test of Mancos Shale
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I. Seating
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III. Stable Crack 
Propagation
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Onset of dilation as 
cracks initiate and rock 

deforms plastically

Volumetric strain reversal
as cracks coalesce

Onset of linear 
elastic behavior

Termination of 
linear elastic 

behavior

Macroscopic failure at
peak strength

Stage of Failure

Crack Threshold Methodology of calculation
Linear Elastic Initiation, Determined as the minimum stress value on the axial stress-axial strain curve, where R2 ~1
Linear Elastic Termination, Determined as the maximum stress value on the axial stress-axial strain curve, where R2 ~1
Crack Initiation, Determined as the maximum stress value of linearity on the volumetric strain-axial stress curve, where R2 ~1
Crack Damage, Determined as the in�ection point on the volumetric strain-axial stress curve
Peak Strength, Determined as the maximum stress value on the axial stress-axial strain curve

σci

σlin.f

σlin.i

σcd

σf

Well
ID

Sample 
No. 

Orientation Facies Peak 
Strength

MCF 1-7 1 parallel 6.2 8788.23
MCF 3-7 2 parallel 4.2 12438.32
MCF4-6 3 parallel 4.2 12904.88
MCF 5-10 4 parallel 4.2 11673.10
MCF 6-3 5 parallel 6.3 18342.72
MCF 6-5 6 parallel 6.3 14955.47
MCF 7-6 7 parallel 3.3 12071.59
MCF 8-6 8 parallel 3.2 11952.32
RG 1-1 9 parallel 6.2 9956.89
RG 2-1 10 parallel 6.2 14097.06
RG 3-4 11 parallel 3.3 12611.31
RG 4-7 12 parallel 6.2 15191.06
RG 5-1 13 parallel 6.2 9397.78
RG5-5 14 parallel 6.2 11573.71
RG 6-6 15 parallel 3.2 16316.74
RG 7-1 16 parallel 6.2 18141.45
RGU 8-1 17 parallel 3.3 15338.28
MCF 1-1 18 perpendicular 6.2 17820.06
MCF 3-1 19 perpendicular 4.2 18751.31
MCF 4-1 20 perpendicular 4.2 20147.30
MCF 5-1 21 perpendicular 4.2 20787.84
MCF 7-3 22 perpendicular 3.3 17862.24
MCF 8-2 23 perpendicular 3.2 14643.51

Samples utilized in this analysis:

Post UCS-test plugs from MCF and RGU

6. admixed siliceous 
muddy v.f. sandstone

4. discontinuous wavy lami-
nated sandy mudstone

3. continuous, curvy-laminat-
ed sandy mudstone 


